Anti-inflammatory and anti-thrombotic efficacy of targeted ultrasound microbubbles on LPS-induced HUVEC cells

Jindong, Sun, Shijun, Pan, Huamin, Yu, Haiqiang, Hu, Yu, Sun, Zhijian, Yang, Robert M., Hoffman, Hong, Yuan

Anticancer Research |

Background/Aim: The early stage of atherosclerosis (AS) demonstrates a lipid-driven inflammatory cytokine increase. In the present study, we aimed to use ultrasound-targeted microbubble delivery (UTMD) therapy with the Endostar-loaded target microbubbles (MBs) to reduce ASrelated inflammatory response. Materials and Methods: Normal and lipopolysaccharide (LPS) induced human umbilical vein endothelial cells (HUVECs) were placed in a parallel-plate flow chamber. MBs were perfused through the parallel-plate flow chamber to mimic physiological blood flow. Five groups were set up: G1: Negative control (normal HUVECs); G2: LPS control (LPS induced HUVECs); G3: ICAM-1-loaded-MBs (MBi); G4: Endostar-loaded-MBs (MBe) and G5: Endostar-ICAM-1-loaded-MBs (MBei). mRNA expression of inflammatory factors and release of inflammatory cytokines were detected by RT-PCR and ELISA, respectively. Results: After treatment with MBei, the mRNA expression of cell adhesion molecule-1 (CD31) (p=0.004), endothelin-1 (ET- 1) (p=0.010), von willebrand factor (vWF) (p=0.018), extracellular regulated protein kinases (ERK) (p=0.046) and nuclear factor kappa B (NF-κB) (p=0.003) were significantly reduced compared to LPS-induced HUVECs. Release of inflammatory cytokines including tissue factor (TF) (p=0.033), tissue factor pathway inhibitor (TF-PI) (p=0.019), ET-1 (p=0.014), vWF (p=0.030) and blood-coagulation factor VIIα (FVIIα) (p=0.000) were also significantly reduced compared to LPS-induced HUVECs. Conclusion: UTMD therapy can inhibit the inflammatory response by reducing atheroscleroticrelated inflammatory factors, suggesting a potential treatment at the early-stage of AS.