This study evaluates the applicability of scaled reassigned spectrograms (ReSTS) on ultrasound radio frequency data obtained with a clinical linear array ultrasound transducer. The ReSTS’s ability to resolve axially closely spaced objects in a phantom is compared to the classical cross-correlation method with respect to the ability to resolve closely spaced objects as individual reflectors using ultrasound pulses with different lengths. The results show that the axial resolution achieved with the ReSTS was superior to the cross-correlation method when the reflected pulses from two objects overlap. A novel B-mode imaging method, facilitating higher image resolution for distinct reflectors, is proposed.