In vitro photoacoustic visualization of myocardial ablation lesions
Nicholas, Dana, Luigi, Di Biase, Andrea, Natale, Stanislav, Emelianov, Richard, Bouchard
Heart Rhythm |
Background—Radiofrequency (RF) ablation to treat atrial arrhythmia is limited by an inability to reliably assess lesion durability and transmurality. Objective—Determine feasibility of photoacoustic characterization of myocardial ablation lesions in vitro. In this study, we investigate the feasibility of combined ultrasound (US) and spectroscopic photoacoustic (sPA) imaging to visualize RF ablation lesions in 3-D based on unique differences in the optical absorption spectra between normal and ablated myocardial tissue. Methods—Tissue samples were excised from the ventricles of fresh porcine hearts. Lesions were generated using an RF catheter ablation system using 20 - 30 W of power applied for 40 - 60 s. Ablated samples were imaged in the NIR regime (740-780 nm) using a combined PA/US imaging system. Measured PA spectra were correlated to the absorption spectra of deoxy-hemoglobin and ablated tissue to produce a tissue characterization map (TCM) identifying 3-D lesion location and extent. Tissue samples were stained and photographed for gross pathology. TCM and gross pathology images were co-registered to assess TCM accuracy.