Targeted lipid nanobubbles as theranostic ultrasound molecular probes with both targeted contrast-enhanced ultrasound molecular imaging and synergistic treatment capabilities are expected to overcome severe challenges in the diagnosis and treatment of refractory triple-negative breast cancer (TNBC). In this study, AS1411 aptamer-functionalised nucleolin-targeted doxorubicin-loaded lipid nanobubbles (AS1411-DOX-NBs) were constructed, and their physicochemical properties as well as anti-tumour and cardioprotective efficacies were systematically tested and evaluated. The results showed that AS1411-DOX-NBs can carry and maintain the physicochemical and pharmacodynamic properties of doxorubicin (DOX) and show stronger tumour cell-killing ability in vitro by increasing the active uptake of drugs. AS1411-DOX-NBs also significantly inhibited the growth of TNBC xenografts while maintaining the weight and health of the mice. Echocardiography and pathological examination further confirmed that AS1411-DOX-NBs effectively caused tumour tissue apoptosis and necrosis while reducing DOX-induced cardiotoxicity. The AS1411-DOX-NBs constructed in this study enable both targeted contrast-enhanced ultrasound molecular imaging and synergistic therapeutic efficacy and can be used as safe and efficient theranostic ultrasound molecular probes for the diagnosis and treatment of TNBC.