Therapeutic benefits of intravenous cardiosphere-derived cell therapy in rats with pulmonary hypertension

Ryan C, Middleton, Mario, Fournier, Xuan, Xu, Eduardo, Marbán, Michael I., Lewis

PLoS ONE |

Pulmonary arterial hypertension (PAH) is a progressive condition characterized by occlusive pulmonary arteriopathy, in which survival remains poor despite pharmacologic advances. The aim of this study was to evaluate the ability of cardiosphere-derived cells (CDCs), car- diac progenitor cells with potent anti-inflammatory and immunomodulatory properties, to attenuate hemodynamic and morphometric remodeling of the right ventricle (RV) and pul- monary arterioles in rats with established monocrotaline (MCT)-induced PAH. Animals were divided into 3 groups: 1) Control (CTL), 2) PAH in which CDCs were centrally infused (CDC) and 3) PAH in which saline was given (Sham). Significant increments in RV systolic pres- sure (RVSP) and RV hypertrophy were noted in Sham animals compared to CTL. In CDC rats at day 35, RSVP fell (- 38%; p< 0.001) and RV hypertrophy decreased (-26%; p< 0.01). TAPSE and cardiac output were preserved in all 3 groups at day 35. Pulmonary arteriolar wall thickness was greater in Sham rats compared to CTL, and reduced in CDC animals for vessels 20–50 μm(P<0.01; back to CTL levels) and 50–80μm(P<0.01) in diameter. The macrophage population was increased in Sham animals compared to CTL (P< 0.001), but markedly reduced in CDC rats. In conclusion, infusion of CDCs markedly attenuated several key pathophysiologic features of PAH. As adjunctive therapy to PAH-specific agents, CDCs have the potential to impact on the pathobiology of adverse pulmonary arteriolar remodel- ing, by acting on multiple mechanisms simultaneously.