SNF5 promotes IL-1β expression via H3K4me1 in atherosclerosis induced by homocysteine

Lin, Xie, Ning, Ding, Honghong, Zhang, Kun, Liu, Jiantuan, Xiong, Shengchao, Ma, Anning, Yang, Huiping, Zhang, Yideng, Jiang

International Journal of Biochemistry and Cell Biology |

Homocysteine (Hcy) is a strong and independent risk factor of atherosclerosis. It can accelerate atherosclerosis through increased production of inflammatory factors, especially interleukin-1 β (IL-1β), while the precise mechanisms remain to be well elucidated. In this study, we investigated the role of the tumor suppressor gene SNF5 related to switch/sucrose non-fermentable complex (SWI/SNF) in the occurrence and development of atherosclerosis induced by Hcy. Using Hyperhomocysteinemia (HHcy) atherosclerotic model with apolipoprotein E knockout (ApoE−/−) mice fed with high-methionine diet, we showed that Hcy aggravates inflammation in macrophages during the atherosclerotic plaque formation. Further analysis showed that SNF5 promotes IL-1β expression and secretion. In addition, due to the existence of H3K4 methylation signals in the vicinity of IL-1β, we found that Hcy significantly promotes the expression of H3K4me1, and lysine-specific histone demethylase 1A (KDM1A) acts as a transcriptional repressor to regulate the expression of H3K4me1 by demethylating H3K4me1. In summary, our results demonstrated that Hcy up-regulates the expression of SNF5 through KDM1A, resulting in an increased level of H3K4me1 modification and IL-1β in macrophages, which in turn promotes the formation of atherosclerosis. Our study will provide more evidence for further revealing the specific mechanism of Hcy-induced inflammation and the diagnosis, prevention, and treatment of atherosclerosis.