Sevoflurane up-regulates microRNA-204 to ameliorate myocardial ischemia/reperfusion injury in mice by suppressing Cotl1
Dian xiang, Tan, Xiao xi, Chen, Tai zhu, Bai, Juan, Zhang, Zhen fa, Li
Life Sciences |
Objective: The inhaled sevoflurane (sevo) is known to protect against myocardial ischemia/reperfusion (I/R) injury (MIRI), in which the functions of microRNAs (miRNAs) have been uncovered. However, the effect of sevo regulating miR-204 on this disease remains unknown. This research aims to explore the roles of sevo and miR-204 in the progression of MIRI. Methods: The MIRI mice models induced by coronary artery ligation were treated by sevo, miR-204 mimics or silenced coactosin-like protein-1 (Cotl1). The pathology of mice myocardial tissues, apoptosis and ultrastructure of cardiomyocytes were observed. The expression of miR-204, Cotl1, Bax and Bcl-2 was determined. The contents of oxidative stress-related factors and inflammatory factors in mouse myocardial tissues were assessed, and the serum levels of indicators that correlated with myocardial infarction were determined as well. The target relation between miR-204 and Cotl1 was confirmed. Results: MiR-204 was down-regulated, and Cotl1 was up-regulated in myocardial tissues of MIRI mice, and Cotl1 was targeted by miR-204. Sevo, elevated miR-204 and inhibited Cotl1 could promote cardiac function of MIRI mice, and protect myocardial tissue against MIRI by repressing the cardiomyocyte apoptosis, oxidative stress and inflammation reaction in MIRI mice. Conclusion: We found that sevo could up-regulate miR-204 to ameliorate MIRI in mice by inhibiting Cotl1 expression, which may provide candidates for the MIRI treatment.