Phosphorylation of Cardiac Myosin-Binding Protein-C Is a Critical Mediator of Diastolic Function

Paola C, Rosas, Yang, Liu, Mohamed I, Abdalla, Candice M, Thomas, David T, Kidwell, Giuseppina F, Dusio, Dhriti, Mukhopadhyay, Rajesh, Kumar, Kenneth M, Baker, Brett M, Mitchell, Patricia a, Powers, Daniel P, Fitzsimons, Bindiya G, Patel, Chad M, Warren, R John, Solaro, Richard L, Moss, Carl W, Tong

Circulation: Heart Failure |

BACKGROUND: -Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of all cases of heart failure and currently has no effective treatment. Diastolic dysfunction underlies HFpEF; therefore, elucidation of the mechanisms that mediate relaxation can provide new potential targets for treatment. Cardiac myosin binding protein-C (cMyBP-C) is a thick filament protein that modulates cross-bridge cycling rates via alterations in its phosphorylation status. Thus, we hypothesize that phosphorylated cMyBP-C accelerates rate of cross-bridge detachment, thereby enhancing relaxation to mediate diastolic function.\n\nMETHODS AND RESULTS: -We compared mouse models expressing phosphorylation deficient cMyBP-C(S273A/S282A/S302A)-cMyBP-C(t3SA), phosphomimetic cMyBP-C(S273D/S282D/S302D)-cMyBP-C(t3SD), and WT-control cMyBP-C(tWT) to elucidate the functional effects of cMyBP-C phosphorylation. Decreased voluntary running distances, increased lung/body weight ratios, and increased brain natriuretic peptide (BNP) levels in cMyBP-C(t3SA) mice demonstrate that phosphorylation deficiency is associated with signs of heart failure. Echocardiography (ejection fraction, myocardial relaxation velocity) and pressure/volume measurements (-dP/dtmin, pressure decay time constant Tau-Glantz, passive filling stiffness) show that cMyBP-C phosphorylation enhances myocardial relaxation in cMyBP-C(t3SD) mice while deficient cMyBP-C phosphorylation causes diastolic dysfunction with preserved ejection fraction in cMyBP-C(t3SA) mice. Simultaneous force and [Ca(2+)]i measurements on intact papillary muscles show that enhancement of relaxation in cMyBP-C(t3SD) mice and impairment of relaxation in cMyBP-C(t3SA) mice are not due to altered [Ca(2+)]i handling, implicating that altered cross-bridge detachment rates mediate these changes in relaxation rates.\n\nCONCLUSIONS: -cMyBP-C phosphorylation enhances relaxation while deficient phosphorylation causes diastolic dysfunction and phenotypes resembling HFpEF. Thus, cMyBP-C is a potential target for treatment of HFpEF.