Cathodic protected Mn2+ by NaxWO3 nanorods for stable magnetic resonance imaging-guided tumor photothermal therapy

Yang, Liu, Shiman, Wu, Yanyan, Liu, Hua, Zhang, Meng, Zhang, Zhongmin, Tang, Yan, Wang, Teng, Gong, Zhenwei, Yao, Xiangming, Fang, Wenbo, Bu

Biomaterials |

The stability and safety of magnetic resonance imaging (MRI) contrast agents (CAs) are crucial for accurate diagnosis and real-time monitor of tumor development. Paramagnetic Mn2+ as nonlanthanide metal ion has been widely studied for use in T1-MRI CAs, but unfortunately, Mn2+ can be oxidized by H2O2 in tumor to nonparamagnetic Mn4+ via a Fenton-like reaction. The concurrent loss of paramagnetism and production of toxic hydroxyl radical ([rad]OH) go against the basic requirment of CAs, thus restricting the further development of Mn2+-based CAs. Based on the different standard potential of W6+/W5+ (~0.26 V) and Mn4+/Mn2+ (~1.2 V), a “cathodic protection” strategy was exploited in Mn2+-doped NaxWO3 nanorods (NaxMnWO3), with W5+ as the sacrificial anode and Mn2+ as the protected cathode, to protect Mn2+ from oxidation in tumor for stable MR contrast performance, as well as repress its Fenton-like reaction activity for good biosafety. Moreover, the tungsten bronze crystal structure endows NaxMnWO3 with excellent near-infrared (NIR)-photothermal properties for effective tumor hyperthermia, without effect from the changed oxidation state of W. This “cathodic protection” strategy offers a new method for the development of reliable and hypotoxic biomaterials for stable imaging and therapeutic applications in clinic.