Blockage of UCHL1 activity attenuates cardiac remodeling in spontaneously hypertensive rats

Xiao, Han, Yun-Long, Zhang, Ting-ting, Fu, Pang-Bo, Li, Tao, Cong, Hui-Hua, Li

Hypertension Research |

Cardiac remodeling is an important pathological process ultimately leading to heart failure. Ubiquitin carboxy-terminal hydrolase 1 (UCHL1) is a deubiquitinase that plays a critical role in neurodegenerative diseases and cancer. However, its role in cardiac remodeling in spontaneously hypertensive rats remains unclear. Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) were administered the UCHL1 inhibitor LDN-57444 (20 μg/kg/day) from 2 months of age for 4 months. Blood pressure, cardiac hypertrophy, fibrosis, inflammation, and oxidative stress were evaluated by the tail-cuff system, echocardiography, and histological analysis. Gene and protein expression levels were examined by real-time PCR and immunoblotting analysis. At 6 months of age, the expression of UCHL at the mRNA and protein levels was significantly upregulated in SHRs compared with WKYs. Moreover, systolic blood pressure, cardiac performance, left ventricular (LV) hypertrophy, fibrosis, inflammation, and superoxide production were significantly increased in SHRs compared with WKYs, and these effects were markedly attenuated by LDN-57444 after 4 months of administration. These beneficial actions were possibly associated with a reduction in blood pressure and inactivation of multiple signaling pathways, including AKT, ERK1/2, STAT3, calcineurin A, TGF-β/Smad2/3, and NF-κB. In conclusion, the results indicate that UCHL1 is involved in hypertensive cardiac remodeling in SHRs, and targeting UCHL1 activity may be a novel potential therapeutic approach for the treatment of hypertensive heart diseases.