Alcohol suppresses cardiovascular diurnal variations in male normotensive rats: Role of reduced PER2 expression and CYP2E1 hyperactivity in the heart
Mohamed, Katary, Abdel A., Abdel-Rahman
Alcohol |
Background and aims: The molecular mechanism of the adverse effects of ethanol on diurnal cardiovascular regulation remains unknown. In separate studies, the cardiac circadian rhythm protein period-2 (PER2) confers cardioprotection and, in other organs, PER2 interaction with the ethanol-metabolizing enzyme CYP2E1 underlies, via heme oxygenase-1 (HO-1) upregulation, tissue injury/dysfunction. Here, we hypothesized that suppressed PER2 expression and elevated CYP2E1/HO-1 levels in the heart underlie the disrupted diurnal cardiovascular rhythm/function in alcohol-fed normotensive rats. Methods: In ethanol-fed (5%, w/v; 8 weeks) or isocaloric liquid diet-fed male rats, diurnal changes in blood pressure (BP), heart rate (HR), HR vagal variability index, root mean square of successive beat-to-beat differences in beat-interval duration (rMSSD), and cardiac function were measured by radiotelemetry and echocardiography followed by ex vivo molecular studies. Results: Radiotelemetry findings showed ethanol-evoked reductions in BP (during the dark cycle), rMSSD (during both cycles), and in diurnal differences in BP and rMSSD. Echocardiography findings revealed significant (p < 0.05) reductions in ejection fraction and fractional shortening (weeks 4–6) in the absence of cardiac remodeling (collagen content). Hearts of ethanol-fed rats exhibited higher (p < 0.05) CYP2E1 activity (50%) and HO-1 expression (63%), along with reduction (p < 0.05) in PER2 levels (29%), compared with the hearts of isocaloric diet-fed control rats. Conclusions: Our novel findings implicate upregulations of CYP2E1/HO-1 and downregulation of the circadian rhythm cardioprotective protein PER2, in the heart, in the chronic deleterious diurnal cardiovascular effects of alcohol in male rats.