Activation of E-prostanoid 3 receptor in macrophages facilitates cardiac healing after myocardial infarction

Juan, Tang, Yujun, Shen, Guilin, Chen, Qiangyou, Wan, Kai, Wang, Jian, Zhang, Jing, Qin, Guizhu, Liu, Shengkai, Zuo, Bo, Tao, Yu, Yu, Junwen, Wang, Michael, Lazarus, Ying, Yu

Nature Communications |

Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6Clow and Ly6Chigh) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E2 is involved in the Mo/Mp-mediated inflammatory response, however, the role of its receptors in Mos/Mps in cardiac healing remains to be determined. Here we show that pharmacological inhibition or gene ablation of the Ep3 receptor in mice suppresses accumulation of Ly6Clow Mos/Mps in infarcted hearts. Ep3 deletion in Mos/Mps markedly attenuates healing after MI by reducing neovascularization in peri-infarct zones. Ep3 deficiency diminishes CX3C chemokine receptor 1 (CX3CR1) expression and vascular endothelial growth factor (VEGF) secretion in Mos/Mps by suppressing TGFb1 signalling and subsequently inhibits Ly6Clow Mos/Mps migration and angiogenesis. Targeted overexpression of Ep3 receptors in Mos/Mps improves wound healing by enhancing angiogenesis. Thus, the PGE2/Ep3 axis promotes cardiac healing after MI by activating reparative Ly6Clow Mos/Mps, indicating that Ep3 receptor activation may be a promising therapeutic target for acute MI.