Adipocytes play important roles in regulating cardiovascular health and disease. However, the molecular mechanism underlying the endocrine role of brown adipose tissue (BAT) in pathological cardiac remodeling remains unknown. Herein we show that adenosine A2Areceptor (A2AR) knockout (A2ARKO) causes interscapular BAT (iBAT) dysfunction, leading to accelerated cardiac remodeling in hypertension compared with wild-type (WT) mice. Surgical iBAT depletion induces dramatic cardiac remodeling in WT but not in A2ARKO hypertensive mice. AMPK/PGC1α signaling-induced fibroblast growth factor 21 (FGF21) in brown adipocytes is required for A2AR-mediated inhibition of hypertensive cardiac remodeling. Recombinant FGF21 administration improves cardiac remodeling in iBAT-depleted hypertensive mice. More importantly, brown adipocyte-specific A2ARKO inhibits FGF21 production and accelerates cardiac damage in hypertension. Consistently, brown adipocyte-specific FGF21 knockout abolishes the effects of A2AR agonism in attenuating hypertensive cardiac remodeling. Our findings reveal a distinctive endocrine role of BAT in hypertensive cardiac remodeling via activating A2AR/FGF21 pathway.