Supplemental Berberine in a High-Fat Diet Reduces Adiposity and Cardiac Dysfunction in Offspring of Mouse Dams with Gestational Diabetes Mellitus

Laura K, Cole, Ming, Zhang, Li, Chen, Genevieve C, Sparagna, Marilyne, Vandel, Bo, Xiang, Vernon W, Dolinsky, Grant M, Hatch

The Journal of Nutrition |

BACKGROUND: There are few evidence-based strategies to attenuate the risk of metabolic syndrome in offspring exposed to gestational diabetes mellitus (GDM). Berberine (BBR) is an isoquinoline alkaloid extracted from Chinese herbs and exhibits glucose lowering properties. OBJECTIVES: We hypothesized that dietary BBR would improve health outcomes in the mouse offspring of GDM dams. METHODS: Wild-type C57BL/6 female mice were fed either a Lean-inducing low-fat diet (L-LF,10% kcal fat, 35% kcal sucrose) or a GDM-inducing high-fat diet (GDM-HF, 45% kcal fat, 17.5% sucrose) for 6 wk prior to breeding with wild-type C57BL/6 male mice throughout pregnancy and the suckling period. The resulting Lean and GDM-exposed male and female offspring were randomly assigned an LF (10% kcal fat, 35% kcal sucrose), HF (45% kcal fat, 17.5% sucrose), or high-fat berberine (HFB) (45% kcal fat, 17.5% sucrose diet) containing BBR (160 mg/kg/d, HFB) at weaning for 12 wk. The main outcome was to evaluate the effects of BBR on obesity, pancreatic islet function, and cardiac contractility in GDM-exposed HF-fed offspring. Significance between measurements was determined using a 2 (gestational exposure) × 3 (diet) factorial design by a 2- way ANOVA using Tukey post-hoc analysis. RESULTS: In the GDM-HF group, body weights were significantly increased (16%) compared with those in baseline (L-LF) animals (P < 0.05). Compared with the L-LF animals, the GDM-HF group had a reduction in pancreatic insulin glucose-stimulated insulin secretion (74%) and increased cardiac isovolumetric contraction time (IVCT; ∼150%) (P < 0.05). Compared with GDM-HF animals, the GDM-HFB group with the dietary addition of BBR had significantly reduced body weight (16%), increased glucose-stimulated insulin secretion from pancreatic islets (254%), and reduced systolic heart function (46% IVCT) (P < 0.05). CONCLUSIONS: In a mouse model of GDM, dietary BBR treatment provided protection from obesity and the development of pancreatic islet and cardiac dysfunction.