Loss of Caveolin-1 and caveolae leads to increased cardiac cell stiffness and functional decline of the adult zebrafish heart
Dimitrios, Grivas, Álvaro, González-Rajal, Carlos, Guerrero Rodríguez, Ricardo, Garcia, José Luis, de la Pompa
Scientific Reports |
Caveolin-1 is the main structural protein of caveolae, small membrane invaginations involved in signal transduction and mechanoprotection. Here, we generated cav1-KO zebrafish lacking Cav1 and caveolae, and investigated the impact of this loss on adult heart function and response to cryoinjury. We found that cardiac function was impaired in adult cav1-KO fish, which showed a significantly decreased ejection fraction and heart rate. Using atomic force microscopy, we detected an increase in the stiffness of epicardial cells and cells of the cortical zone lacking Cav1/caveolae. This loss of cardiac elasticity might explain the decreased cardiac contraction and function. Surprisingly, cav1-KO mutants were able to regenerate their heart after a cryoinjury but showed a transient decrease in cardiomyocyte proliferation.