Long non‐coding RNA cardiac hypertrophy‐associated regulator governs cardiac hypertrophy via regulating miR‐20b and the downstream PTEN/AKT pathway

Mingyu, Zhang, Yuan, Jiang, Xiaofei, Guo, Bowen, Zhang, Jiangjiao, Wu, Jiabin, Sun, Haihai, Liang, Hongli, Shan, Yong, Zhang, Jiaqi, Liu, Ying, Wang, Lu, Wang, Rong, Zhang, Baofeng, Yang, Chaoqian, Xu

Journal of Cellular and Molecular Medicine |

Pathological cardiac hypertrophy (CH) is a key factor leading to heart failure and ultimately sudden death. Long non‐coding RNAs (lncRNAs) are emerging as a new player in gene regulation relevant to a wide spectrum of human disease including cardiac disorders. Here, we characterize the role of a specific lncRNA named car‐ diac hypertrophy‐associated regulator (CHAR) in CH and delineate the underlying signalling pathway. CHAR was found markedly down‐regulated in both in vivo mouse model of cardiac hypertrophy induced by pressure overload and in vitro cellular model of cardiomyocyte hypertrophy induced by angiotensin II (AngII) insult. CHAR down‐regulation alone was sufficient to induce hypertrophic phenotypes in healthy mice and neonatal rat ventricular cells (NRVCs). Overexpression of CHAR reduced the hypertrophic responses. CHAR was found to act as a competitive endogenous RNA (ceRNA) to down‐regulate miR‐20b that we established as a pro‐hypertrophic miRNA. We experimentally established phosphatase and tensin homolog (PTEN), an anti‐hypertrophic signalling molecule, as a target gene for miR‐20b. We found that miR‐20b induced CH by directly repressing PTEN expression and indirectly increas‐ ing AKT activity. Moreover, CHAR overexpression mitigated the repression of PTEN and activation of AKT by miR‐20b, and as such, it abrogated the deleterious effects of miR‐20b on CH. Collectively, this study characterized a new lncRNA CHAR and un‐ ravelled a new pro‐hypertrophic signalling pathway: lncRNA‐CHAR/miR‐20b/PTEN/ AKT. The findings therefore should improve our understanding of the cellular func‐ tionality and pathophysiological role of lncRNAs in the heart.