Rats are protected from the stress of chronic pressure overload compared with mice

Koichi, Nishimura, Marko, Oydanich, Jie, Zhang, Denis, Babici, Diego, Fraidenraich, Dorothy E., Vatner, Stephen F., Vatner

American Journal of Physiology-Regulatory, Integrative and Comparative Physiology |

The goal of this investigation was to compare the effects of chronic (4 wk) transverse aortic constriction (TAC) in Sprague-Dawley rats and C57BL/6J mice. TAC, after 1 day, induced similar left ventricular (LV) pressure gradients in both rats ( n = 7) and mice ( n = 7) (113 ± 5.4 vs. 103 ± 11.5 mmHg), and after 4 wk, the percent increase in LV hypertrophy, as reflected by LV/tibial length (51% vs 49%), was similar in rats ( n = 12) and mice ( n = 12). After 4 wk of TAC, LV systolic and diastolic function were preserved in TAC rats. In contrast, in TAC mice, LV ejection fraction decreased by 31% compared with sham, along with increases in LV end-diastolic pressure (153%) and LV systolic wall stress (86%). Angiogenesis, as reflected by Ki67 staining of capillaries, increased more in rats ( n = 6) than in mice ( n = 6; 10 ± 2 vs. 6 ± 1 Ki67-positive cells/field). Myocardial blood flow fell by 55% and coronary reserve by 28% in mice with TAC ( n = 4), but they were preserved in rats ( n = 4). Myogenesis, as reflected by c-kit-positive myocytes staining positively for troponin I, is another mechanism that can confer protection after TAC. However, the c-kit-positive cells in rats with TAC were all negative for troponin I, indicating the absence of myogenesis. Thus, rats showed relative tolerance to severe pressure overload compared with mice, with mechanisms involving angiogenesis but not myogenesis.