Dietary methionine restriction improves the impairment of cardiac function in middle-aged obese mice

Le, Han, Guoqin, Wu, Chuanxin, Feng, Yuhui, Yang, Bowen, Li, Yueting, Ge, Yuge, Jiang, Yonghui, Shi, Guowei, Le

Food & Function |

Dietary methionine restriction (MR) has been reported to extend lifespan, reduce obesity and decrease oxidative damage to mtDNA in the heart of rats, and increase endogenous hydrogen sulfide (H2S) pro- duction in the liver and blood. H2S has many potential benefits in the pathophysiology of the cardio- vascular system. MR also increases the level of homocysteine (Hcy) in the liver and plasma, but elevated plasma Hcy is a risk factor for cardiovascular disease. Therefore, this study aimed to determine the effect of MR on cardiac function and metabolic status in obese middle-aged mice and its possible mechanisms. C57BL/6J mice (aged approximately 28 weeks) were divided into six dietary groups: CON (0.86% meth- ionine + 4% fat), CMR40 (0.52% methionine + 4% fat), CMR80 (0.17% methionine + 4% fat), HFD (0.86% methionine + 24% fat), HMR40 (0.52% methionine + 24% fat) and HMR80 (0.17% methionine + 24% fat) for 15 consecutive weeks. Our results showed that 80% MR improves systolic dysfunction in middle-aged obese mice and enhances myocardial energy metabolism. 80% MR also reduces myocardial oxidative stress and improves inflammatory response. In addition, 80% MR increased mice Hcy levels and activated remethylation and transsulfur pathways of Hcy and promoted endogenous H2S production in the heart. 40% MR has the same trend, but is not significant. Moreover 40% MR at variance with 80% MR, did not decrease the body weight in both control and high-fat diet mice. These findings suggest that MR can improve myocardial energy metabolism, reduce heart inflammation and oxidative stress by increasing cardiac H2S production, and improve cardiac dysfunction in middle-aged obese mice.