Rutaecarpine attenuates hypertensive cardiac hypertrophy in the rats with abdominal artery constriction (AAC); however, its mechanism of action remains largely unknown. Our previous study indicated that NADPH oxidase 4 (Nox4) promotes angiotensin II (Ang II)‐induced cardiac hypertrophy through the pathway between reactive oxygen species (ROS) and a disintegrin and metalloproteinase‐17 (ADAM17) in primary cardiomyocytes. This research aimed to determine whether the Nox4‐ROS‐ADAM17 pathway is involved in the protective action of rutaecarpine against hypertensive cardiac hypertrophy. AAC‐induced hypertensive rats were adopted to evaluate the role of rutaecarpine in hypertensive cardiac hypertrophy. Western blotting and real‐time PCR were used to detect gene expression. Rutaecarpine inhibited hypertensive cardiac hypertrophy in AAC‐induced hypertensive rats. These findings were confirmed by the results of in vitro experiments that rutaecarpine significantly inhibited Ang II‐induced cardiac hypertrophy in primary cardiomyocytes. Likewise, rutaecarpine significantly suppressed the Nox4‐ROS‐ADAM17 pathway and over‐activation of extracellular signal‐regulated kinase (ERK) 1/2 pathway in the left ventricle of AAC‐induced hypertensive rats and primary cardiomyocytes stimulated with Ang II. The inhibition of Nox4‐ROS‐ADAM17 pathway and over‐activation of ERK1/2 might be associated with the beneficial role of rutaecarpine in hypertensive cardiac hypertrophy, thus providing additional evidence for preventing hypertensive cardiac hypertrophy with rutaecarpine.