Effect of increased p CO 2 on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms

Jessica L., Ray, Birte, Töpper, Shu, An, Anna, Silyakova, Joachim, Spindelböck, Runar, Thyrhaug, Michael S., DuBow, T. Frede, Thingstad, Ruth-Anne, Sandaa

FEMS Microbiology Ecology |

The generation of Big Data has enabled systems-level dissections into the mechanisms of cardiovascular pathology. Integration of genetic, proteomic, and pathophysiological variables across platforms and laboratories fosters discoveries through multidisciplinary investigations and minimizes unnecessary redundancy in research efforts. The Mouse Heart Attack Research Tool (mHART) consolidates a large dataset of over 10 years of experiments from a single laboratory for cardiovascular investigators to generate novel hypotheses and identify new predictive markers of progressive left ventricular remodeling following myocardial infarction (MI) in mice. We designed the mHART REDCap database using our own data to integrate cardiovascular community participation. We generated physiological, biochemical, cellular, and proteomic outputs from plasma and left ventricles obtained from post-MI and no MI (naïve) control groups. We included both male and female mice ranging in age from 3 to 36 months old. After variable collection, data underwent quality assessment for data curation (e.g. eliminate technical errors, check for completeness, remove duplicates, and define terms). Currently, mHART 1.0 contains >888,000 data points and includes results from >2,100 unique mice. Database performance was tested and an example provided to illustrate database utility. This report explains how the first version of the mHART database was established and provides researchers with a standard framework to aid in the integration of their data into our database or in the development of a similar database.