TRPV2 knockout mice demonstrate an improved cardiac performance following myocardial infarction due to attenuated activity of peri-infarct macrophages

Michal, Entin-Meer, Lena, Cohen, Einat, Hertzberg-Bigelman, Ran, Levy, Jeremy, Ben-Shoshan, Gad, Keren

PLOS ONE |

Background We have recently shown that the expression of the transient receptor potential vanilloid 2 channel, TRPV2, is upregulated in the peri-infarct zone 3–5 days following an acute myocardial infarction (AMI). Further analysis has demonstrated that invading monocytes maturing to macrophages merely harbor the documented elevated expression of this channel. Purpose Assess cardiac function in TRPV2-KO mice compared to TRPV2-WT following AMI and analyze the potential involvement of TRPV2-expressing macrophages in the recovery process. Methods TRPV2-KO or WT mice were induced with AMI by ligation of the left anterior descending artery (LAD). In another set of experiments, TRPV2-KO mice induced with AMI, were intravenously (IV) injected with WT or TRPV2-KO peritoneal macrophages in order to directly assess the potential contribution of TRPV2-expressing macrophages to cardiac healing. Cardiac parameters were obtained by echocardiography 1 day and 30 days post infarction. The relative changes in the ejection fraction (EF) and additional cardiac parameters between baseline (day 1) and day 30 were calculated and statistical significance was determined (SPSS). Results The in vivo study showed that while EF was significantly decreased in the WT animals between baseline and day 30, EF was only slightly and insignificantly reduced in the KO animals. Likewise LVESD and LVESA were significantly modified exclusively in the WT animals. Moreover, intravenous administration of peritoneal WT macrophages, but not KO macrophages, significantly reduced survival of post-MI TRPV2-KO mice. Conclusion The data suggest that knockout of the TRPV2 channel may attenuate macrophage-dependent pro-inflammatory processes and result in better cardiac recovery. TRPV2 may thus represent a novel therapeutic target for treatment of patients undergoing an acute MI.