Molecular Imaging of Vasa Vasorum Neovascularization via DEspR-targeted Contrast-enhanced Ultrasound Micro-imaging in Transgenic Atherosclerosis Rat Model

Julius L, Decano, Anne Marie, Moran, Nelson, Ruiz-Opazo, Victoria L M, Herrera

Molecular Imaging and Biology |

PURPOSE: Given that carotid vasa vasorum neovascularization is associated with increased risk for stroke and cardiac events, the present in vivo study was designed to investigate molecular imaging of carotid artery vasa vasorum neovascularization via target-specific contrast-enhanced ultrasound (CEU) micro-imaging. PROCEDURES: Molecular imaging was performed in male transgenic rats with carotid artery disease and non-transgenic controls using dual endothelin1/VEGFsp receptor (DEspR)-targeted microbubbles (MB(D)) and the Vevo770 micro-imaging system and CEU imaging software. RESULTS: DEspR-targeted CEU-positive imaging exhibited significantly higher contrast intensity signal (CIS)-levels and pre-/post-destruction CIS-differences in seven of 13 transgenic rats, in contrast to significantly lower CIS-levels and differences in control isotype-targeted microbubble (MB(C))-CEU imaging (n = 8) and in MB(D) CEU-imaging of five non-transgenic control rats (P < 0.0001). Ex vivo immunofluorescence analysis demonstrated binding of MB(D) to DEspR-positive endothelial cells; and association of DEspR-targeted increased contrast intensity signals with DEspR expression in vasa vasorum neovessel and intimal lesions. In vitro analysis demonstrated dose-dependent binding of MB(D) to DEspR-positive human endothelial cells with increasing %cells bound and number of MB(D) per cell, in contrast to MB(C) or non-labeled microbubbles (P < 0.0001). CONCLUSION: In vivo DEspR-targeted molecular imaging detected increased DEspR-expression in carotid artery lesions and in expanded vasa vasorum neovessels in transgenic rats with carotid artery disease. Future studies are needed to determine predictive value for stroke or heart disease in this transgenic atherosclerosis rat model and translational applications.