Pulmonary Flow as an Improved Method for Determining Cardiac Output in Mice after Myocardial Infarction
Mathew J., Platt, Jason S., Huber, Keith R., Brunt, Jeremy A., Simpson
Journal of the American Society of Echocardiography |
Background Echocardiography is a valuable noninvasive technique to estimate cardiac output (CO) from the left ventricle (LV) not only in clinical practice but also in small-animal experiments. CO is used to grade cardiac function and is especially important when investigating cardiac injury (e.g., myocardial infarction [MI]). Critically, MI deforms the LV, invalidating the assumptions fundamental to calculating of cardiac volumes directly from the LV. Thus, the purpose of this study was to determine if Doppler-derived blood flow through the pulmonary trunk (pulmonary flow [PF]) was an improved method over conventional LV–dependent echocardiography to accurately determine CO after MI. Methods Variations in CO were induced either by transverse aortic constriction or MI. Echocardiography was performed in healthy (n = 27), transverse aortic constriction (n = 25), and MI (n = 41) mice. CO calculated from PF (pulsed-wave Doppler) was internally compared with CO calculated from left ventricular images using M-mode (Teichholz formula) and the single-plane ellipsoid two-dimensional (2D) formula and externally compared with the gold standard, flow probe CO. Results In healthy mice, all three echocardiographic methods (M-mode, 2D, and PF) correlated well with flow probe–derived CO. In MI mice, only PF CO values correlated well with flow probe values. Bland-Altman analysis confirmed that PF was improved over M-mode and 2D echocardiography. Inter- and intrauser variability of PF CO was reduced, and both inter- and intraclass correlation coefficients were improved compared with either M-mode or 2D CO calculations. Conclusions PF CO calculated from pulsed-wave Doppler through the pulmonary trunk was an improved method of estimating CO over LV–dependent formulas after MI.