Polydatin post-treatment alleviates myocardial ischaemia/reperfusion injury by promoting autophagic flux

Y., Ling, G., Chen, Y., Deng, H., Tang, L., Ling, X., Zhou, X., Song, P., Yang, Y., Liu, Z., Li, C., Zhao, Y., Yang, X., Wang, M., Kitakaze, Y., Liao, A., Chen

Clinical Science |

Polydatin (PD), a resveratrol (RES) glycoside, has a stronger antioxidative effect than RES. It is known that RES is an autophagic enhancer and exerts a cardioprotective effect against ischaemia/reperfusion (I/R) injury. However, the effect of PD post-treatment on myocardial I/R injury remains unclear. In the present study, we investigated the influences of PD post-treatment on myocardial I/R injury and autophagy. C57BL/6 mice underwent left coronary artery (LCA) occlusion and cultured neonatal rat cardiomyocytes (NRCs) subjected to hypoxia were treated with vehicle or PD during reperfusion or re-oxygenation. We noted that PD enhanced autophagy and decreased apoptosis during I/R or hypoxia/reoxygenation (H/R), and this effect was antagonized by co-treatment with adenovirus carrying short hairpin RNA for Beclin 1 and 3-methyladenine (3-MA), an autophagic inhibitor. Compared with vehicle-treated mice, PD-treated mice had a significantly smaller myocardial infarct size (IS) and a higher left ventricular fractional shortening (LVFS) and ejection fraction (EF), whereas these effects were partly reversed by 3-MA. Furthermore, in the PD-treated NRCs, tandem fluorescent mRFP-GFP-LC3 assay showed abundant clearance of autophagosomes with an enhanced autophagic flux, and co-treatment with Bafilomycin A1 (Baf), a lysosomal inhibitor, indicated that PD promoted the degradation of autolysosome. In addition, PD post-treatment reduced mitochondrial membrane potential and cellular reactive oxygen species (ROS) production in NRCs, and these effects were partially blocked by Baf. These findings indicate that PD post-treatment limits myocardial I/R injury by promoting autophagic flux to clear damaged mitochondria to reduce ROS and cell death.