Optical imaging with her2-targeted affibody molecules can monitor hsp90 treatment response in a breast cancer xenograft mouse model.

Stephanie M W Y, van de Ven, Sjoerd G, Elias, Carmel T, Chan, Zheng, Miao, Zhen, Cheng, Abhijit, De, Sanjiv S, Gambhir

Clinical cancer research : an official journal of the American Association for Cancer Research |

PURPOSE: To determine whether optical imaging can be used for in vivo therapy response monitoring as an alternative to radionuclide techniques. For this, we evaluated the known Her2 response to 17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride (17-DMAG) treatment, an Hsp90 inhibitor. EXPERIMENTAL DESIGN: After in vitro 17-DMAG treatment response evaluation of MCF7 parental cells and 2 HER2-transfected clones (clone A medium, B high Her2 expression), we established human breast cancer xenografts in nude mice (only parental and clone B) for in vivo evaluation. Mice received 120 mg/kg of 17-DMAG in 4 doses at 12-hour intervals intraperitonially (n = 14) or PBS as carrier control (n = 9). Optical images were obtained both pretreatment (day 0) and posttreatment (day 3, 6, and 9), always 5 hours postinjection of 500 pmol of anti-Her2 Affibody-AlexaFluor680 via tail vein (with preinjection background subtraction). Days 3 and 9 in vivo optical imaging signal was further correlated with ex vivo Her2 levels by Western blot after sacrifice. RESULTS: Her2 expression decreased with 17-DMAG dose in vitro. In vivo optical imaging signal was reduced by 22.5% in clone B (P = 0.003) and by 9% in MCF7 parental tumors (P = 0.23) 3 days after 17-DMAG treatment; optical imaging signal recovered in both tumor types at days 6 to 9. In the carrier group, no signal reduction was observed. Pearson correlation of in vivo optical imaging signal with ex vivo Her2 levels ranged from 0.73 to 0.89. CONCLUSIONS: Optical imaging with an affibody can be used to noninvasively monitor changes in Her2 expression in vivo as a response to treatment with an Hsp90 inhibitor, with results similar to response measurements in positron emission tomography imaging studies.