Muscle-specific sirtuin 3 overexpression does not attenuate the pathological effects of high-fat/high-sucrose feeding but does enhance cardiac SERCA2a activity

Christopher J., Oldfield, Teri L., Moffatt, Kimberley A., O'Hara, Bo, Xiang, Vernon W., Dolinsky, Todd A., Duhamel

Physiological Reports |

Obesity, type 2 diabetes, and heart disease are linked to an unhealthy diet. Sarco(endo)plasmic reticulum calcium (Ca2+) ATPase 2a (SERCA2a) controls cardiac function by transporting Ca2+ in cardiomyocytes. SERCA2a is altered by diet and acetylation, independently; however, it is unknown if diet alters cardiac SERCA2a acetylation. Sirtuin (SIRT) 3 is an enzyme that might preserve health under conditions of macronutrient excess by modulating metabolism via regulating deacetylation of target proteins. Our objectives were to determine if muscle-specific SIRT3 overexpression attenuates the pathological effects of high fat-high sucrose (HFHS) feeding and if HFHS feeding alters cardiac SERCA2a acetylation. We also determined if SIRT3 alters cardiac SERCA2a acetylation and regulates cardiac SERCA2a activity. C57BL/6J wild-type (WT) mice and MCK-mSIRT3-M1-Flag transgenic (SIRT3TG) mice, overexpressing SIRT3 in cardiac and skeletal muscle, were fed a standard-diet or a HFHS-diet for 4 months. SIRT3TG and WT mice developed obesity, glucose intolerance, cardiac dysfunction, and pathological cardiac remodeling after 4 months of HFHS feeding, indicating muscle-specific SIRT3 overexpression does not attenuate the pathological effects of HFHS-feeding. Overall cardiac lysine acetylation was increased by 63% in HFHS-fed mice (p = 0.022), though HFHS feeding did not alter cardiac SERCA2a acetylation. Cardiac SERCA2a acetylation was not altered by SIRT3 overexpression, whereas SERCA2a Vmax was 21% higher in SIRT3TG (p = 0.039) than WT mice. This suggests that SIRT3 overexpression enhanced cardiac SERCA2a activity without direct SERCA2a deacetylation. Muscle-specific SIRT3 overexpression may not prevent the complications associated with an unhealthy diet in mice, but it appears to enhance SERCA2a activity in the mouse heart.