Background: Previous studies showed that hydroxyapatite electret (HAE) accelerates the regeneration of vascular endothelial cells and angiogenesis. This study investigated the effects of HAE in myocardial infarction (MI) model mice. Methods and Results: MI was induced in mice by ligating the left anterior descending artery. Immediately after ligation, HAE, nonpolarized hydroxyapatite (HAN), or water (control) was injected into the infarct border myocardium. Functional and histological analyses were performed 2 weeks later. Echocardiography revealed that HAE injection preserved left ventricular systolic function and the wall thickness of the scar, whereas HAN-injected mice had impaired cardiac function and thinning of the wall, similar to control mice. Histological assessment showed that HAE injection significantly attenuated the length of the scar lesion. There was significant accumulation of CD31-positive cells and increased expression of vascular endothelial growth factor (Vegf), intercellular adhesion molecule-1 (Icam1), vascular cell adhesion molecule-1 (Vcam1), hypoxia-inducible factor-1α (Hif1a), and C-X-C motif chemokine ligand 12 (Cxcl12) genes in the infarct border zone of HAE-injected mice. These effects were not induced by HAN injection. Anti-VEGFR2 antibody canceled the beneficial effect of HAE. In vitro experiments in a human cardiovascular endothelial cell line showed that HAE dose-dependently increased VEGFA expression. Conclusions: Local injection of HAE attenuated infarct size and improved cardiac function after MI, probably due to angiogenesis. The electric charge of HAE may stimulate angiogenesis via HIF1α-CXCL12/VEGF signaling.