Dragon's Blood exerts cardio-protection against myocardial injury through PI3K-AKT-mTOR signaling pathway in acute myocardial infarction mice model

Chun, Li, Yi, Zhang, Qiyan, Wang, Hui, Meng, Qian, Zhang, Yan, Wu, Wei, Xiao, Yong, Wang, Pengfei, Tu

Journal of Ethnopharmacology |

Ethnopharmacological relevance: Dragon's Blood (DB), the red resin of Dracaena cochinchinensis (Lour.) S. C., has been used in traditional Chinese medicine to treat acute myocardial infarction (AMI) for centuries. Evidence indicated that DB may exert cardio-protective effect by inhibiting inflammatory response during myocardial infarction. However, its pharmaceutical mechanism is still to be elucidated. Aim of the study: Due to its potential anti-inflammatory effect, Dragon's Blood extract (DBE) was applied on AMI mice model in this study and its mechanism on inflammation via PI3K-AKT-mTOR signaling pathway was to be validated. Materials and methods: AMI mice model was established by ligation of left anterior descending (LAD) arteries. DBE was administered for 7 days before the surgery. Heart function was evaluated by 2D echocardiography. Levels of CK-MB and LDH1 in serum as well as TXB2, 6-keto-PGF1α and ET-1 in plasma were detected. Level of IL-6 in cardiac tissues was quantified by ELISA. Expressions of key proteins in PI3K-AKT-mTOR signaling pathway were detected by Western blot. Results: The result demonstrated that DBE could improve heart function in AMI mice model. Meanwhile, it could also regulate levels of CK-MB and LDH1, and restore balance between TXB2 and 6-keto-PGF1α. Further study suggested that DBE could inhibit inflammation and regulate expressions of key proteins in IL-6-JAK2/STAT3 pathway in cardiac tissue. Western blot results validated that DBE could activate PI3K-AKT-mTOR signaling pathway, thereby regulating the expressions of its downstream targets, including VEGF, COX2 and PPARγ. Conclusion: DBE exerts cardio-protective efficacy by activating JAK2-STAT3 and PI3K-AKT-mTOR pathways in cardiac tissue. These findings provide insight into the pharmacological mechanism of DBE and validate the beneficial effects of DBE in the clinical application for AMI.