Implanted grafts, including vascular substitutes, inevitably experience remodeling by host cells. The design of grafts capable of promoting constructive remodeling remains a challenge within regenerative medicine. Here, we used a biodegradable elastic polymer, poly (L-lactide-co-ε-caprolactone) (PLCL), to develop a vascular graft with circumferentially aligned microfibers. The grafts exhibited excellent handling properties and resistance to deformation. Upon implantation in rat abdominal aorta, graft-guided neoartery regeneration was achieved in a short period (4 weeks) as evidenced by rapid cell infiltration and alignment, and complete endothelialization. During vascular remodeling, a high ratio of M2/M1 macrophage was detected, and the expression of pro-in- flammatory and anti-inflammatory cytokines first increased and then decreased to normal level for the follow-up period. By 12 months, the PLCL grafts were almost completely degraded and a well-integrated neoartery was formed with characteristics comparable to native arteries, such as transparent appearance, synchronous pulsa- tion, dense and orderly extracellular matrix (ECM) arrangement, strong and compliant mechanical properties, and vasomotor response to pharmacologic agents. Taken together, our strategy represents a new avenue for guided tissue regeneration by designing the grafts to promote tissue remodeling via controlling structure, de- gradation and mechanical properties of the scaffolds.