The maturity and patency of arteriovenous fistula (AVF) are essential for patients undergoing hemodialysis. Dysfunction of AVF due to neointimal hyperplasia (NIH) presents a significant clinical challenge. While balloon dilation therapy and open surgery can address this issue, they are associated with a higher likelihood of restenosis and reduced long-term durability. Therefore, there is an urgent need to establish a new method for inhibiting NIH to prolong the patency of AVF treatment. In this study, we developed a local vascular-encapsulated sustained-release drug delivery system containing degradable rapamycin nanofiber membrane patches (R-NFMs). During surgery, R-NFMs were wrapped around the anastomotic site of the AVF and the venous outflow tract. In vitro assessments demonstrated the consistent and stable release of rapamycin from the R-NFMs, confirming the material's non-toxicity and its support of healthy cellular morphology. Animal studies further revealed that the experimental group showed significant reductions in neointimal and medial hyperplasia, as well as decreased expression of α-SMA, compared to controls. In conclusion, these findings suggest that R-NFMs are effective in inhibiting NIH and may serve as an innovative preventative approach to this pervasive issue.