Heart failure (HF) is a major cause of death in cardiovascular diseases worldwide, and its molecular mechanisms and effective prevention strategies remain to be further studied. The myocardial cytoskeleton plays a pivotal role in many heart diseases. However, little is known about the function of the membrane cytoskeleton 4.1 protein family and related regulatory mechanisms in the pathogenesis of HF. In this study, we detected the localization and expression of the protein 4.1 family and ion channel proteins in a rat HF model induced by doxorubicin (DOX), and studied the interactions between them. Our results showed that compared with the control group, the HF group displayed an increased expression level of protein 4.1R and decreased levels of protein 4.1 G and 4.1 N. The Nav1.5 protein levels were significantly increased, while the SERCA2a and Cav1.2 protein levels were significantly decreased in the HF group. Furthermore, there is co-localization and interaction between protein 4.1R and Nav1.5, protein 4.1 G and SERCA2a, protein 4.1 N and Cav1.2, respectively. Taken together, the results indicated that the protein 4.1 family might be involved in the occurrence and development of HF through its interaction with ion channel proteins, suggesting that 4.1 proteins may serve as a novel therapeutic target for HF.