Coadministration of an Adhesive Conductive Hydrogel Patch and an Injectable Hydrogel to Treat Myocardial Infarction

Tengling, Wu, Chunyan, Cui, Yuting, Huang, Yang, Liu, Chuanchuan, Fan, Xiaoxu, Han, Yang, Yang, Ziyang, Xu, Bo, Liu, Guanwei, Fan, Wenguang, Liu

ACS Applied Materials & Interfaces |

Over the past decade, tissue-engineering strategies, mainly involving injectable hydrogels and epicardial biomaterial patches, have been pursued to treat myocardial infarction. However, only limited therapeutic efficacy is achieved with a single means. Here, a combined therapy approach is proposed, that is, the coadministration of a conductive hydrogel patch and injectable hydrogel to the infarcted myocardium. The self-adhesive conductive hydrogel patch is fabricated based on Fe3+-induced ionic coordination between dopamine-gelatin (GelDA) conjugates and dopamine-functionalized polypyrrole (DA-PPy), which form a homogeneous network. The injectable and cleavable hydrogel is formed in situ via a Schiff base reaction between oxidized sodium hyaluronic acid (HA-CHO) and hydrazided hyaluronic acid (HHA). Compared with a single-mode system, injecting the HA-CHO/HHA hydrogel intramyocardially followed by painting a conductive GelDA/DA-PPy hydrogel patch on the heart surface results in a more pronounced improvement of the cardiac function in terms of echocardiographical, histological, and angiogenic outcomes.