The two-pore-domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction

Dennis M., Abraham, Teresa E., Lee, Lewis J., Watson, Lan, Mao, Gurangad S., Chandok, Hong-Gang, Wang, Stephan, Frangakis, Geoffrey S., Pitt, Svati H., Shah, Matthew J., Wolf, Howard A., Rockman

Journal of Clinical Investigation |

Cardiac two pore domain potassium channels (K2P) exist in organisms from Drosophila to humans, however their role in cardiac function is not known. We identified a K2P gene, CG8713 (sandman), in a Drosophila genetic screen and show that sandman is critical to cardiac function. Mice lacking an ortholog of sandman, TWIK related potassium channel (TREK-1 or Kcnk2), exhibit exaggerated pressure overload induced concentric hypertrophy and alterations in fetal gene expression, yet retain preserved systolic and diastolic cardiac function. While cardiomyocyte specific deletion of TREK-1 in response to in vivo pressure overload resulted in cardiac dysfunction, TREK-1 deletion in fibroblasts prevented deterioration in cardiac function. The absence of pressure overload induced dysfunction in TREK-1 KO mice was associated with diminished cardiac fibrosis and reduced activation of c-Jun N-terminal kinase activity (JNK) in cardiomyocytes and fibroblasts. These findings indicate a central role for cardiac fibroblast TREK-1 in the pathogenesis of pressure overload-induced cardiac dysfunction and serve as a conceptual basis for its inhibition for as a potential therapy.